Main site

MAIN ALUMINIUM ALLOYS

 

CHEMICAL
COMPOSITION

MECANICAL
CARACTERISTICS

 

ALLOYS

Si

Fe

Cu

Mn

Mg

Zn

Ti

Sb

Ni

Zr

Ag

THT

R
MPa

R 0,2
MPa

A%

HB

CHARACTERISTIC

AS7G03

A 356

DIN 3.2371

UNI 7257

6,50
/
7,50

0,20 0,10 0,10

0,25
/
0,45

0,10
/
0,20

0,05
/
0.20

-

-

-

-

T6 290 220 4 85 good mechanical characteristics
AS7G06

A357

DIN 3.2384

UNI 7257

6,50
/
7,50

0,20 0,10 0,10

0,45
/
0,70

0,10

0,08
/
0,25

-

-

-

- T6 320 240 4 85 very good mechanical characteristics
AU5GT

DIN 3.1841

0,30 0,35

4,20
/
5,0

0,10

0,15
/
0,35

0,10

0,15
/
0,35

-

-

-

-

T4

T6

340 220 4 90 Excellent mechanical characteristics
AU5NKZr 0,30 0,50

4,50
/
5,50

0,20
/
0,30

-

-

0,15
/
0,25

0,10
/
0,40

1,30
/
1,80

0,10
/
0,30

-

T7 220 180 1 80 hot use
A 201

KO1
0,05 0,10

4,00
/
5,00

0,20
/
0,40

0,15
/
0,35

-

0,15
/
0,35

-

-

-

0,40
/
1,00

T6

T7

420 350 5 80 High mechanical resistance

 


Haut

TOLERANCES

Dimensions

(mm)

0
to
3
3
to
6
6
to
10
10
to
18
18
to
30
30
to
50
50
to
80
80
to
120
120
to
180
180
to
250
250
to
315
315
to
400
400
to
500
LARGE

JS 15

+/-

0,20

+/-

0,24

+/-

0,29

+/-

0,35

+/-

0,42

+/-

0,50

+/-

0,60

+/-

0,70

+/-

0,80

+/-

0,925

+/-

1,05

+/-

1,15

+/-

1,25

NORMAL JS 14

+/-

0,125

+/-

0,15

+/-

0,18

+/-

0,215

+/-

0,26

+/-

0,31

+/-

0,37

+/-

0,435

+/-

0,5

+/-

0,575

+/-

0,65

+/-

0,70

+/-

0,775

TIGHTENED

JS 13

+/-

0,07

+/-

0,09

+/-

0,11

+/-

0,135

+/-

0,165

+/-

0,195

+/-

0,23

+/-

0,27

+/-

0,315

+/-

0,36

+/-

0,405

+/-

0,445

+/-

0,485

FLATNESS  

DEPENDS ON THE PIECE CONFIGURATION : FRON 0,05 TO 0,12 PER 25 MM LINEAR

CONCENTRICITY  

< 6 mm : ± 0,075 ; 6 < C < 12,5 = ± 0,1 ; > 12,5 : ± 0,25

CIRCULARITY  

< 6 mm : ± 0,075 ; 6 < C < 12,5 = ± 0,1 ; > 12,5 : ± 0,25

ANGULARITY  

ANGULAR TOLERANCE  : ± 30’

RUGOSITY  

RA = 2 to 3,2 mm

TOLERANCES FOR FABRICS : MINI ± 0,25 mm


Haut

The following table is giving the main designations of the 6 welding alloys, except for the 4000 family, and comparing the french designations to the others.

 France

 ISO
CEN

 Germany

USA 

 England

 New

 Old

 New

 Old

 1000 : Al only

 1050A

 A5

Al99.5

 Al99.5

 3.0255

 (1050)

 1B

 1050A

 1070A

 A7

 Al99.7

 Al99.7

 3.0275

 (1070)


1080 

 A8

 Al99.8

 Al99.8

 3.0285

 1080

 1A

 1080A

 1200

 A4

 Al99.0

 Al99

 3.0205

1C 

 1200

 2000 : Al + Cu

 2011

 AU5PbBi

 AlCu6BiPb

 AlCuBiPb

 3.1655

 2011

 FC1

 2011

 2014

 AU4SG

 AlCu4SiMg

 AlCuSiMn

 3.1255

 2014

 (H15)

 (2014A)

 2017A

 AU4G

 AlCu4MgSi

 AlCuMg1

 3.1325

 (2017)


 2024

 AU4G1

 AlCu4Mg1

 AlCuMg2

 3.1355

 2024


 2030

 AU4Pb

 AlCuPbMg

 (AlCuMgPb)

 (3.1645)



 2618A

 AU2GN

 AlCu2MgNi


(2618) 

  H16

 2618A

 3000 : Al + Mg

 3003

 AM1

 AlMn1Cu

 AlMnCu

 3.0517

 3003

 (N3)

 (3103)

 3004

 AM1G

 AlMn1Mg1

 AlMn1Mg1

 3.0526

 3004


 5000 : Al + Mn

 5005

 AG06

 AlMg1

 (AlMg1)

 (3.3315)

 5005

 N41

 5005

 5052

 AlMg2.5

 AlMg2.5

 3.3523

 5052


 5056A

 AG5

 AlMg5

 AlMg5

 3.3555

 (5056)

 N6

 5056A

 5083

 AG4,5

 AlMg4.5Mn

 AlMg4.5Mn

 3.3547

 5083

 N8

 5083

 5086

 AG4MC

 AlMg4

 AlMg4Mn

 3.3545

 5086


 5454

 AlMg3Mn

 AlMg2.7Mn

 3.3537

 5454

 N51

 5454

 5754

 AG3M

 AlMg3

 AlMg3

 3.3535



 6000 : Al + Mn + Si

 6005A

AlSiMg 

 AlMgSi0.7

 3.3210



 6060

 AGS

 AlMgSi

 AlMgSi0.5

 3.3206

 (6063)

 (H9)

 (6063)

 6061

 AlMg1SiCu

 AlMg1SiCu

 3.3211

 6061

 H20

 6061

 6082

 ASGM0.7

 AlSi1Mg

 AlMgSi1

 3.3215

 H30

 6082

 7000 : Al + Zn + Mn

 7020

 AZ5G

 AlZn4.5Mg1

 AlZn4.5Mg1

 3.4335

 (7005)

 H17

 7020

 7075

 AZ5GU

 AlZn6MgCu

 AlZnMgCu1.5

 3.4365

 7075

 7075


Haut

4. Influence of conditions of manufacture - metallurgical States


The alloys of families 2000, 6000 and 7000 can be hardened by heat treatment of solution treatment and quenching, followed by a age hardening which is made :
- either at the ambient temperature (maturation or natural ageing),
- or by heating (returned or accelerated maturation or artificial ageing).
The solution treatment, thermal treatment at high temperature can be done in a furnace, but for certain alloys, in particular those of family 6000, it can be done during an operation of hotworking.

The table below gives the standardized designation of the states valid in France and in Europe.

 Operations

treatment in furnace  

Hotworking 
Quenching + natural ageing

 T4

 T1
Quenching + artificial ageing

 T6

 T5

Alloys and delivery states typical characteristics

The table below gives typical values of the composition and a certain number of physical properties of alloys usually used.

 Alloy

 Composition in %

 Voluminal mass kg.dm-3

 Electric conductivity %IACS

 Thermal conductivity W.m-1.K-1

Fe

Si

Cu

Mn

Mg

Cr

Zn

Pb

 6082
  1,00   0,7 0,9      

 2,71

 41

 174

 

The table below gives typical values of the mechanical characteristics, properties of implementation and standard application of these alloys.

Alloy

 State

 Mecanical Characteristics

 

 Corrosion resistance

 Welding Aptitude

 Machining

 Aptitude for the deformations

 Aptitude for anodising

Applications
 Rm MPa  Rp02 MPa  A%

 1050A

O

80

30

42

 A

 A

 C

 A

 A
Building, Kitchen

H24

115

80

25

 A

 A

 B

 B

 A

 2017A

T4

420

280

18

C

 D

 A

 C

 C
Gen. Mech.

 2024

T3

465

320

18

 C

 D

 B

 D

 C
Aeronautics

 2030

T3

450

390

10

 C

 D

 A

 C

 C
Free Machining

5083

O

305

160
23

 A

 A

 C

 B

 A
Chemical,cryo transport

H116

335

230

20

 A

 A

 B

 B

 A

5086

O

278

135

25

 A

 A

 C

 B

 A
Chemical, cryo C. naval
H22

310

225

18

 A

 A

 B

 D

 A

 5754

O

220

100

23

 A

 A

 C

 B

 A
 Hollow ware, marine

H24

270

215

10

 A

A

 B

 D

 A

 6060

T5

220

190

16

A

 B

 C

 C

 A
 Building

 6082

T6

315

280

12

 A

 B

 C

 C

 A
 Transport

 7075

T6

565

495

11

 C

 D

 B

 D

 B
Aero

A : very good - B : good -C : medium -D : bad

Haut

Sommaire

Classification of alloys according to their use

Macining - Free Machining - welding - Structural uses

- corrosion resistance - Composition - Anodic Oxydation

Machining - Free Machining

Aluminium and its alloys are machined with facility with respect of taking some precautions at the high cutting speeds and of using adapted tools. The aluminium alloys are machined better than pure aluminium; it is in particular the case of alloys with age hardening. Generally, the alloys with high mechanical characteristics, and thus with low capacity of cold deformation cold, are machined well.

The best adapted alloys to machining are :
2017A T4, 2024 T3 ,2618A T851
5083 H111
6082 T6
7075 T651

The specific alloys for free machining contain lead or lead and bismuth (elements which support the fragmentation of the chip largely) are :
2011 T3, 2030 T3
6262 T9

Welding

If in a general way all the aluminium alloys are weldable, they do not behave all in an identical way; it is necessary to distinguish three classes from alloys:

* the alloys without age hardening (families 1000, 3000 and 5000) They have a good weldability; when they are used with the state annealed, they do not undergo a loss sensitive of mechanical characteristics on the welded parts. On the other hand when they are in a hammer-hardened state, the hardening due to work hardening disappears in the vicinity of the welding. Alloys - typical states are : 1050A O, 3003 O, 5083 H111, 5086 O; the addition of chromium in the last two alloys still improves their weldability.

* alloys with age hardening free from copper (family 6000 and certain alloys of family 7000).
The thermal cycle of welding affects the mechanical characteristics of the base metal which is generally in a quenched-tempered state; this loss is final for alloys of family 6000 except if it is possible to carry out a new treatment of income on the welded structure; the alloys of family 7000 find a notable part of their initial characteristics by maturation at the ordinary temperature.
The typical alloys are : 6060 T5, 6082 T6 ,7020 T5.

* The alloys with age hardening containing copper (family 2000 and certain alloys of family 7000)
These alloys are not easily weldable because, on the one hand, they are prone to the splits during the solidification of the welding, and, on the other hand, their mechanical characteristics after welding are strongly decreased. However these alloys are more or less sensitive to these phenomena: the 2618A T851 is not very sensitive to the splits. The use of process TIG with great concentration of energy and increased gas protection allows a notable improvement of the results.

Structural uses

The aluminium alloys are very much used for structural applications competing with steels. The elastic module of aluminium alloys, which the third of that of steels, led, to avoid too significant bendings, to increase the thicknesses of the sections compared to those of steels; so the reduction resulting from the replacement of steel by an aluminium alloy is not in the report/ratio of the densities but lies between 40 % and 60 %. However, the possibility of obtaining with aluminium alloys some complex profiles makes it possible to compensate for the weak elastic module of metal by a form of the profiles which leads to high moment of inertia.
Alloys - States most used : :
5083 H22, 5086 H24 ,5754 H24
6005A T5 ,6061 T6, 6082 T6
7020 T5

 

Corrosion Resistance

The aluminium alloys are famous to be well resistant to corrosion. However, under certain conditions of exposure, they can undergo a damage. This one can appear in various forms which depend on the composition of alloy and its metallurgical state.

Composition

* More the content impurities iron and silicon is weak, more aluminium and its alloys resist corrosion.
* The alloys of family 3000 resist as well corrosion as the aluminium of commercial purity.
* The alloys containing some copper (family 2000 and certain alloys of family 7000) resist corrosion badly.
* The alloys of family 5000 resist corrosion well if the magnesium content does not exceed 4 %. Beyond this content, it is necessary to treat thermically metal (H116 state).
* The alloys of family 6000 have a good behavior and this more especially as they have a very good aptitude for the anodization which forms a layer of thick and protective alumina.
* The alloys of family 7000 without copper resist corrosion well. Certain alloys with low zinc content are used like plating of protection of alloy 7000 sheets with copper intended for aeronautics.

Anodic oxydation

Anodic oxidation or anodization makes it possible to build an oxide coating much thicker than the natural alumina film; this layer confers thus on metal:
- a good protection against corrosion,
- an improvement of the aspect of surface, which will last in time; moreover the anodic layer can be coloured,
- a modification of several properties of surface such as for example: electric insulation, capacity reflectors, surface hardness, coefficient of friction.
The aluminium alloys do not lend themselves in a way identical to the treatment of anodization. The alloys most suited belong to families 1000, 5000 and 6000. The alloys containing of copper are with difficulty anodisables

Family 1000: the layer is all the more transparent as the contents iron and silicon are weak.
Family 2000: the layer has a limited thickness and is porous what decreases its protective capacity.
Family 3000: the layer has a more or less gray colour.
Family 5000: the layer is grey and depends on the other elements of addition (chromium and manganese).
Family 6000: the process of anodization is largely used in the metal fittings.
Family 7000: the conditions of anodization must be adjusted with the composition and the type of required protection.


Haut

6061

Aluminium

Nominale Chemical Composition% :

Si 

Fe 

Cu 

Mn 

 Mg

 Cr

Zn 

 Ti

 Al

0,40 à 0,80

 max
0,70

 0,15 à 0,40

 max
0,15

 0,8 à 1,2

 0,04 à 0,35

max
 0,25

max
 0,15

 Solde

Typical Mechanical characteristics :

 Etat

 Rp 0,2 hbar

 RM hbar

 A 5,65 %

 HB brinell

 densité

 O

 6

 12

 28

 30

 2,7

 T4

 13

 23

 23

 65

 2,7

 T6

 27

 31

13

 95

 2,7

European Standards:

Composition : NF EN 573-1

6082 (ASGM 0,7)


NF A 02.104 : 6082 A
ISO : Al Si 1 Mg Mn

Aluminium

Nominal chemical composition % :

Si 

Fe 

Cu 

Mn 

 Mg

 Cr

Zn 

 Ti

 Al

0,7 à 1,3

 max
0,5

 max
0,10

 0,40 à 1,0

 0,6 à 1,2

 max
0,25

max
 0,20

 max
0,10

 Solde

Haut

Typical Mechanical characteristics :

 Etat

 Rp 0,2 hbar

 RM hbar

 A 5,65 %

 HB brinell

 densité

 T6

 28

31

12

80/100

 2,7

European standards:

Composition : NF EN 485-2

Mechanical characteristics :

-Bars, Tubes, Shaped Threads : NF EN 755-2

- Bars,Stretched Tubes : NF EN 754-2

Haut